Introduction of SEU International Summer School Program 2021

Theme

Low-carbon technologies for Building energy and application

Overview

In view of the increasing demand for internationalized talents in the field of energy and power, this project plays an equal role in training Chinese and international students. Distinguished experts from Europe and Australia have been invited to deliver lectures for Refrigeration and Air Conditioning design for low-carbon built environment: Professor Christos Markides from Imperial College London, Professor Xiaolin Wang from the University of Tasmania, Dr. Hongwei Wu from University of Hertfordshire. Three professors will also organize open forums in cutting edge technologies and application. Focusing on practice and innovation, this project will give students opportunity to study advanced low-carbon technologies, building energy and environment in China, UK and Australia, and arrange them to carry out innovative design of refrigeration and air conditioning application for buildings. This project will be run for 20 consecutive working days for 3 courses, which can replace the basic and applied courses of Design of Air Conditioning, Design of Refrigeration System and Advanced Practicum.

Schedule

Course 1: Low-carbon technologies for Built Environment and Design (Design of Air Conditioning)

Time	Content	Lecturer	Platform
16/July	Introduction Overview of	Xiaolin Wang	Zoom
8:30-10:30	Energy		
16/July	Technologies for effective solar	Christos	Zoom
15:30-17:00	energy thermal utilization	Markides	
17/July	Project description- Description of	Xiaolin Wang	Zoom
8:30-10:30	a design project for a residential		
	air-conditioning system		
17/July	High efficiency energy use via	Christos	Zoom
15:30-17:00	heat recovery, conversion and	Markides	
	co-generation		
18/July	Geothermal heat pump	Xiaolin Wang	Zoom

8:30-10:30			
19/July	Thermal circuit theory	Xiaolin Wang	Zoom
8:30-10:30	Thermal circuit theory		
20/July	Psychometric analysis of	Xiaolin Wang	Zoom
8:30-10:30	air-conditioning system		
21/July	Heat exchanger design	Xiaolin Wang	zoom
14:00-16:00	Heat exchanger design		
22/July	Project consultation	Xiaolin Wang	Zoom
8:30-10:30	1 Toject consultation		
23/July	Interactive cross making of the	Xiaolin Wang	Zoom
9:30-11:30	design project		
23/July	Project presentations	Xiaolin Wang &	Zoom
14:00-16:00	Froject presentations	Yonggao Yin	

Course description

This course focuses on how to design an energy efficient built environment and analyze energy conservation potential through utilization of renewable energy. Low-carbon technologies and demonstration cases for built environment, such as solar thermal utilization, geothermal heat pump, will be discussed. Some basic knowledge for air conditioning design will also be introduced, such as psychometric analysis of air-conditioning system, heat exchanger design, heat/cooling load evaluation. This course would promote students aware of energy efficiency of green buildings involving leading-edge technologies when making of air conditioning system design.

Lecturer introduction

Professor Christos Markides

Christos Markides is a professor at the Department of Chemical Engineering, Imperial College London, the head of the Clean Energy Processes Laboratory and also the Editor-in-Chief of Applied Thermal Engineering. His research interests focus primarily on the application of fundamental principles of thermodynamics, fluid mechanics and heat/mass transfer to high-performance technologies for energy (especially waste heat and solar energy) recovery, utilization (heating/cooling/power) and storage. In the past 5 years, he has published more than 60 SCI-indexed journal papers, 4 of which are ESI Highly Cited Papers. His main awards

Imperial College London President Awards for Teaching (2016) and Research Excellence (2017).

Professor Wang enjoys his research in cooling and power engineering, energy storage and conversion, desalination and utilization of renewable energy. He was named as Field Leader in Thermal Science by the Australian Research Magazine in 2018. He is a Fellow of Engineers Australia and member of the World Society of Sustainable Energy Technologies. He won the DAAD visiting fellowship by DAAD Germany in 2003 and Ludwig Mond Prize 2005, by the Institute of Mechanical Engineers (IMechE) of United Kingdom. He won the Australian China Young Scientist Exchange Program award in 2009 and the Australian Japan Emerging Research Leader Program award in 2016 by the Australia Academy of Technological Sciences and Engineering (ATSE). He received He is

Associate Editor of Australian Journal of Mechanical Engineering and editorial board member for five other international journals. He has completed many national/international research projects with a total value more than \$6 million. He is Co-CI of Blue Economic CRC (\$329 million). He has published more than 170 international journal and conference papers with a H-index of 28.

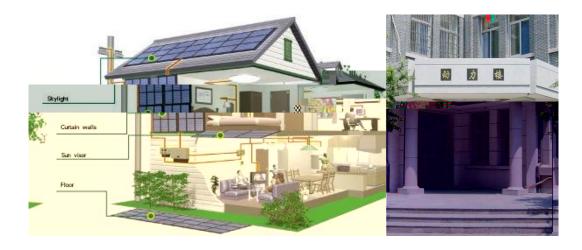
	ПП		

Date	Lecture & Seminar & Project Design with Defence	Time
2021/08	The Fundamentals Concepts of Thermodynamics	To be
	Heat Engine; Heat Pump; Refrigeration	announced
	Research project presentation and discussion (I)	
	Methods of Cooling and the Reversed Carnot Cycle	
	Rankine Cycle	
	Research project presentation and discussion (II)	
	A Vapour-Compression Refrigeration Cycle incorporating a throttle valve	
	Theoretical and Practical Cycle	
	Research project presentation and discussion (III)	
	A Single-stage vapour-compression refrigeration cycles with	
	superheating and subcooling	
	Tutorial Session	
	Research project presentation and discussion (IV)	
	Multistage vapour-compression Refrigeration cycles water	
	refrigeration	
	Tutorial Session	
	Research project presentation and discussion (V)	
	Absorption and gas cycle refrigeration	
	Heat Pump System (Fundamental concept)	
	Research project presentation and discussion (VI)	
	Renewable Energy and Heat Pump System	
	Renewable Energy Introduction	
	Research project presentation and discussion (VII)	
	Introduction to various types of heat pump	
	Refrigeration system design	
	Research project presentation and discussion (VIII)	
	Project Design (Design of a Chiller or Uitary Air Conditioner)	
2021/08	Project Defence/Presentation (each student will make 30 minute	
	presentation for the project design).	
	Marking will be evaluated based on: (1) presentation and layout;	
	(2) pace and clarity; (3) Selection of material presented, results,	
	critical analysis etc; (4) Level of technical competence	
	demonstrated (including answering questions).	

This module provides an introduction to several subject areas in refrigeration and

management and efficiency. The topics covered in the module mainly include: Energy conversion technologies; Methods of cooling and the reversed Carnot cycle; Single-stage vapour-compression refrigeration cycle; Multistage vapour-compression refrigeration cycles; Heat pump system; Renewable energy and heat pump system. The module will also include visiting several real industries.

The module will be delivered through lectures and knowledge will be consolidated in seminar and problem solving sessions. Assessment will be an individual assignment.



Dr Wu joined University of Hertfordshire as a Senior Lecturer in the School of Engineering and Computer Science since Jan. 2017. Dr Wu received his BEng (1st Class Honours, 1998), MSc (Distinction, 2000) and joint PhD (2004, with Hongkong University of Science and Technology) with specialisation in Thermofluids all from Beihang University (formerly Beijing University of Aeronautics and Astronautics). He has an academic/research profile previously developed at Northumbria University (Senior Lecturer, 2015-2017), University of the West of Scotland (Lecturer, 2013-2015), Birmingham University (Research Fellow, 2012-2013) and Brunel University London (Research Fellow, 2009-2012) in UK, Beihang University in China (Associate Professor, 2007-2009), as well as University of British Columbia & University of Alberta in Canada (Postdoc, 2004-2007). His research has been focused on Thermofluid Modelling/Simulation and experimental study for Energy & Flow Physics. He has an international profile with more than 120 peer-reviewed journal and conference publications in his academic career, including top journals such as Applied Energy, Applied Thermal Engineering, Fuel, International Journal of Heat and Mass Transfer etc. He has been a regular reviewer of many leading journals and serves as Editor/Editorial Board Members of several International Journals. He also serves as general Chair and session Chairs/co-Chairs, TPC members at a number of International Conferences. He is currently an EPSRC Peer Review Full College Member and regular reviewer for EPSRC proposals.

Faculty

School of Energy and Environment, Southeast University

Contact Information

Yonggao Yin y.yin@seu.edu.cn Shuhong Li equart@seu.edu.cn